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Abstract
We investigate the nature of the phase diagram for a self-avoiding walk model
of a random copolymer at an interface between two immiscible solvents, when
one monomer prefers to be in one solvent, the other monomer prefers to be in
the other solvent, and both types of monomer have an attractive or repulsive
interaction with the interface. Our results are all rigorous, and extend previous
work of Maritan et al (1999) and Martin et al (2000).

PACS numbers: 82.35.Jk, 05.40.Fb

1. Introduction

Random copolymers are polymers with two or more types of comonomer where the distribution
of comonomers along the polymer chain is determined by some random process but then fixed.
They are an example of a system with quenched randomness (Brout1959). These polymers can
be modelled as self-avoiding walks with vertices coloured (say randomly and independently)
A or B to represent two types of comonomer.

The problem which we shall examine in this paper is a random copolymer at an interface
between two immiscible liquid phases, which we call α and β. It is energetically favourable
for one of the two types of monomer (A, say) to be in phase α and for the other (B) to be
in phase β. At high temperatures, the polymer delocalizes into the energetically preferred
phase since this maximizes its entropy. At low temperatures, the polymer crosses the interface
frequently to optimize the numbers of monomers in their preferred phases. The transition
between these two types of behaviour is known as the localization transition.

There have been several previous treatments of this problem (Sinai and Spohn 1996,
Bolthausen and den Hollander 1997, Maritan et al 1999, Biskup and den Hollander 1999,
Martin et al 2000), in which the models considered differ in several ways. The first rigorous
treatment of the problem was by Sinai and Spohn (1996). They considered a model with
annealed randomness and found it necessary to include an interaction with the interface in
order to obtain a localization transition. The remaining references all focussed on quenched
randomness. Bolthausen and den Hollander (1997) and Biskup and den Hollander (1999)
considered a directed walk model in two dimensions. Maritan et al (1999) considered both
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random walk and self-avoiding walk models,and Martin et al (2000) considered a self-avoiding
walk model. In addition, the models differed in the details of the potential functions used.
There is general agreement about the existence of a localization transition in the system with
quenched randomness but many details of the nature of the phase diagram are still unknown.

The model which we shall consider is a generalization of that introduced by Martin et al
(2000). We shall work on the d-dimensional hypercubic lattice Zd and we write a point of Zd as
x = (x1, . . . , xd). The hyperplane xd = 0 will play the role of the interface between the α and
β phases. An N-step self-avoiding walk (SAW) is a sequence ω = (ω(0), ω(1), . . . , ω(N))

of N + 1 distinct points of Zd such that ω(i + 1) is a nearest neighbour of ω(i) for each i. We
write ωi(k) to denote the ith coordinate of the point ω(k). Let cN be the number of N-step
SAWs with ω(0) = 0. The limit limN→∞ c

1/N

N is known to exist (see Madras and Slade (1993)
for a review), and we call this limit µd , or µ where no confusion is likely to arise. A half-space
SAW is a SAW with ω(0) = 0 and ωd(k) > 0 for every k � 1. Thus a half-space SAW
represents a polymer that is completely delocalized into the α phase. Let hN be the number
of N-step half-space SAWs. It is known (Whittington 1975) that

lim
N→∞

h
1/N

N = µd. (1.1)

The vertices of the walk are independently coloured A with probability p and B with
probability 1 − p. We write χi to denote the colour of the ith vertex (A or B). We take the 0th
vertex of the walk to be at the origin, so its colour is irrelevant, and we write χ as a shorthand
for the sequence of colours χ1, χ2, . . . , χN . Let cN(vA, vB,w|χ) be the number of N-step
SAWs with colouring χ , having vA A-vertices with xd > 0, vB B-vertices with xd < 0 and
w + 1 vertices with xd = 0. We shall use the letter α as a parameter to denote the energy
associated with each A monomer that lies in the α phase, and analogously for β. Define the
partition function

ZN(α, β, γ |χ) =
∑

vA,vB ,w

cN(vA, vB,w|χ) eαvA+βvB+γw (1.2)

and the corresponding free energy

κN(α, β, γ |χ) = N−1 log ZN(α, β, γ |χ). (1.3)

Note that both A and B vertices have energy of interaction γ with the interfacial plane xd = 0.
Part of the interest in introducing the γ term is that such an interaction with the interface was
considered by Sinai and Spohn (1996).

The results which are already known (Martin et al 2000) for this model are all for the
special case d = 3 and γ = 0, though these results can easily be extended to general values
of d. (We remark, however, that lemma 2.4 of Martin et al (2000) contains an error in the
last step, where it essentially assumes that the expected value of the maximum of several
random variables equals the maximum of the expected values, which is not generally true.
The proof of the lemma can be repaired with some additional work, but fortunately there is an
alternate route to the proof of self-averaging of the free energy using the methods of Madras
and Whittington (2002) in the manner described below.) Theorem 2.3 of Martin et al (2000)
says that the limiting quenched average free energy exists, i.e.

κ̄(α, β, 0) = lim
N→∞

〈κN(α, β, 0|χ)〉 (1.4)

where the angular brackets denote an average over colourings. The same method of proof
works when γ �= 0. The system is said to be thermodynamically self-averaging if for almost
all χ

lim
N→∞

κN(α, β, γ |χ) = κ̄(α, β, γ ). (1.5)
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Figure 1. Sketch of phase diagram when γ = 0. The lines labelled α∗
A(0) and β∗

A(0) (respectively,
α∗

B(0) and β∗
B(0)) represent the asymptotes of the phase boundary of the region where the polymer

is delocalized into the α (respectively, β) phase. See section 2 for the formal definitions.

The most direct proof of thermodynamic self-averaging uses a recent result about the extent of
self-averaging for finite N (Madras and Whittington 2002) coupled with the existence of the
limiting quenched average free energy. This is done in theorem 12 in section 3.

The following results were proved by Martin et al (2000), who only considered γ = 0. In
the second quadrant (α � 0 and β � 0), κ̄(α, β, 0) equals log µd +β(1−p) (in particular, it is
independent of α), and in the fourth quadrant (α � 0 and β � 0) it equals log µd + αp (these
proofs also hold for negative γ ). As we shall discuss at the beginning of the next section,
the value log µd + αp (respectively, log µd + β(1 − p)) for the free energy corresponds to the
case that the polymer is delocalized into the α (respectively, β) phase. In the first quadrant
(α, β � 0) the free energy κ̄(α, β, 0) is singular along two curves β = f1(α) and α = f2(β)

such that 0 � f1(α) � min{αp/(1 − p),C1} and 0 � f2(β) � min{β(1 − p)/p,C2}, where
C1 and C2 are constants depending on p. In the third quadrant (α, β � 0), κ̄(α, β, 0) is
singular on the curves β = f3(α) and α = f4(β), where f3(α) � −(log(µd/µd−1))/(1 − p)

and f4(β) � −(log(µd/µd−1))/p. The f1 and f4 (respectively, f2 and f3) curves are on
the boundary of the region where the copolymer is delocalized into the α (respectively, β)
phase. The expected form of the phase diagram (in the (α, β)-plane for γ = 0) is sketched in
figure 1.

The paper is organized as follows. Section 2 contains our results about the phase diagram
for general (α, β, γ ), including monotonicity and convexity. For γ � 0, we prove several
properties of the phase boundaries of figure 1, including the fact that the boundaries pass
through the origin but are otherwise separated by the line αp = β(1 − p). For sufficiently
large positive γ , however, we show that the origin is in the interior of the localized phase;
indeed, the system is localized throughout the entire third quadrant for some positive values
of γ , and it is localized everywhere when γ is very large. Additional results are presented in
section 2. Some of the longer proofs are deferred to section 3. We remark that the system is
localized whenever αp = β(1 − p) �= 0 (theorem 6) is a fully rigorous version of the proof of
Maritan et al (1999). Section 4 is a discussion of our results, some extensions, and some open
questions.
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2. The form of the phase diagram

We begin by determining the free energy κ̄ associated with the delocalized phase. Consider
all N-step half-space self-avoiding walks, i.e. SAWs that are entirely delocalized into the α

phase. The contribution to the partition function ZN(α, β, γ |χ) for these SAWs is hN eαA(χ),
where A(χ) is the number of A-vertices among the vertices of the walk. The strong law of
large numbers tells us that A(χ)/N → p as N → ∞. With equation (1.1), this shows that

lim
N→∞

1

N
log(hN eαA(χ)) = log µd + αp. (2.1)

If this is the dominant term, then we will have κ̄(α, β, γ ) = log µd + αp. Thus, we shall say
that the system is delocalized into the α phase if κ̄(α, β, γ ) = log µd + αp. Similarly, we say
that the system is delocalized into the β phase if κ̄(α, β, γ ) = log µd + β(1 − p). These two
expressions are always lower bounds for κ̄ . Thus we have the dichotomy that the system is
either

delocalized if κ̄(α, β, γ ) = log µd + max{αp, β(1 − p)}
or

localized if κ̄(α, β, γ ) > log µd + max{αp, β(1 − p)}.
We define the following three regions of (α, β, γ ) space:

DELOCα = {(α, β, γ ) : κ̄(α, β, γ ) = log µd + αp}
= region of delocalization into α phase

DELOCβ = {(α, β, γ ) : κ̄(α, β, γ ) = log µd + β(1 − p)}
= region of delocalization into β phase

LOC = {(α, β, γ ) : κ̄(α, β, γ ) > log µd + max{αp, β(1 − p)}}
= region of localization.

The union of these three regions is everything. Observe that DELOCα is a subset of the half-
space {(α, β, γ ) : αp � β(1 − p)}, and DELOCβ is a subset of {(α, β, γ ) : αp � β(1 − p)}.
DELOCα and DELOCβ could have common points only on the plane αp = β(1 − p).

We shall often consider regions of the (α, β)-plane for a fixed value of γ . For this reason
we also define, for each real γ0,

DELOCα(γ0) = {(α, β) : (α, β, γ0) ∈ DELOCα}
DELOCβ(γ0) = {(α, β) : (α, β, γ0) ∈ DELOCβ}.

We begin with two straightforward results about the form of the three regions
DELOCα, DELOCβ and LOC.

Theorem 1. (i) If (α1, β1, γ1) is in DELOCα (i.e., the system is delocalized into the α phase
at (α1, β1, γ1)), and if α2 � α1, β2 � β1 and γ2 � γ1 then (α2, β2, γ2) is also in DELOCα.
In particular, DELOCα contains the set of all (α, β, γ ) such that α � 0, β � 0 and γ � 0.
(ii) If (α1, β1, γ1) is in DELOCβ , and if α2 � α1, β2 � β1 and γ2 � γ1 then (α2, β2, γ2) is also
in DELOCβ . In particular, DELOCβ contains the set of all (α, β, γ ) such that α � 0, β � 0
and γ � 0.

Proof. We shall only prove (i), since the proof of (ii) is exactly analogous. Suppose that
(α1, β1, γ1) ∈ DELOCα, and that α2 � α1, β2 � β1 and γ2 � γ1. Then κ̄(α1, β1, γ1) =
log µd + α1p. We can write
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ZN(α2, β2, γ2|χ) =
∑

vA,vB ,w

cN(vA, vB,w|χ) eα2vA+β2vB +γ2w

�
∑

vA,vB ,w

cN(vA, vB,w|χ) e(α2−α1)vA eα1vA+β1vB+γ1w

� e(α2−α1)A(χ)Zn(α1, β1, γ1|χ). (2.2)

Hence κ̄(α2, β2, γ2) � log µd + α2p, which implies that the point (α2, β2, γ2) is also in
DELOCα .

To prove the second statement of (i), it now suffices to show that (0, 0, 0) is in DELOCα,
i.e. κ̄(0, 0, 0) = log µd . This follows from the facts that ZN(0, 0, 0|χ) = cN for every χ , and
that N−1 log cN converges to log µd as N → ∞. �

Theorem 2. The sets DELOCα and DELOCβ are closed and convex.

Proof. We shall only do the proof for DELOCα , since the same argument works for DELOCβ .
Observe that κ̄(α, β, γ ) is finite everywhere (i.e. for all finite values of α, β and γ ). By
standard methods (e.g. lemma 2.1 of Borgs et al (2000)), the function κ̄(α, β, γ ) is convex,
hence continuous. Define

q(α, β, γ ) = κ̄(α, β, γ ) − (log µd + αp).

Then q is also a convex continuous function. The set of (α, β, γ ) for which q � 0 is exactly
DELOCα. (Since q is never strictly negative, this is the same as the set where q equals 0.) But
for any convex function q and any real number r, the set of points x for which q(x) � r is a
convex set. Hence DELOCα is convex. Also, since q is continuous, the set of (α, β, γ ) for
which q � 0 is a closed set. �

The critical surface of the delocalized region DELOCα is the boundary of this region.
The two previous results show that we can describe this surface by a function βc(α, γ ), defined
by

βc(α, γ ) = sup{β : (α, β, γ ) ∈ DELOCα}.
This ‘critical value’ function takes on the value −∞ if the set on the right-hand side is empty
for some choice of α and γ . (The region DELOCβ can be handled analogously, so we shall
usually not discuss it explicitly.) Theorems 1 and 2, together with the fact that DELOCα is a
subset of {(α, β, γ ) : αp � β(1 − p)}, immediately imply the following.

Corollary 3. The function βc(α, γ ) is nondecreasing in α and nonincreasing in γ . Also, it is
a concave function, and hence continuous on the interior of the set of values for which it is
finite. Also, βc(α, γ ) � αp/(1 − p) < +∞ for all (α, γ ).

In addition, we can deduce the following properties.

Corollary 4. Fix γ0 � 0. (i) The point (0, 0, γ0) is in DELOCα and in DELOCβ . In
particular, βc(0, γ0) = 0. (ii) For every fixed constant c such that 0 > c > −∞, the free
energy κ̄(α, β, γ0) along the line β = cα is not differentiable at (0, 0).

Part (i) tells us that when γ0 � 0 the boundaries of the regions DELOCα(γ0) and
DELOCβ(γ0) must meet at the origin. We shall see in theorem 6 that for γ0 � 0, the
point (0, 0) is the only point that is in both DELOCα(γ0) and DELOCβ(γ0). In contrast,
for large (positive) γ0, theorem 5(v) will imply that (0, 0, γ0) is in LOC, and hence that the
regions DELOCα(γ0) and DELOCβ(γ0) are disjoint. Part (ii) says that there is a first-order
phase transition as we cross from one delocalized phase into the other through the origin.
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Note, however, that the origin corresponds to a separate phase, and not to the coexistence of
the two phases DELOCα(γ0) and DELOCβ(γ0).

Proof of corollary 4.

(i) The first assertion follows directly from theorem 1. Since (0, 0, γ0) ∈ DELOCα , we have
βc(0, γ0) � 0. Also, for β > 0 we have κ̄(0, β, γ0) � log µd + β(1 − p) > log µd , so
(0, β, γ0) �∈ DELOCα; hence βc(0, γ0) � 0. The second assertion now follows.

(ii) Assume 0 > c > −∞. Theorem 1 tells us that

κ̄(α, cα, γ0) =
{

log µd + αp for α � 0
log µd + cα(1 − p) for α � 0.

Since p �= c(1 − p), the function α �→ κ̄(α, cα, γ0) is not differentiable at 0. This
proves (ii). �

Martin et al (2000) prove results about various horizontal and vertical asymptotes of the
phase boundaries in the case γ = 0. To discuss these, we make the following definitions for
each finite γ :

β∗
A(γ ) = sup{β : (α, β) ∈ DELOCα(γ ) for some finite α}

β∗
B(γ ) = inf{β : (α, β) ∈ DELOCβ(γ ) for some finite α}

α∗
A(γ ) = inf{α : (α, β) ∈ DELOCα(γ ) for some finite β}

α∗
B(γ ) = sup{α : (α, β) ∈ DELOCβ(γ ) for some finite β}.

See figure 1. In particular, observe that β∗
A(γ ) = limα→∞ βc(α, γ ) by the monotonicity of βc

(corollary 3). In this sense, we regard the line β = β∗
A(γ ) as a horizontal asymptote for the

curve α �→ βc(α, γ ). Also observe that α∗
A(γ ) = inf{α : βc(α, γ ) > −∞}; we regard the

line α = α∗
A(γ ) as a vertical asymptote of α �→ βc(α, γ ). We shall see below that these four

asymptote values are finite for every γ , unless the associated delocalized region is empty (see
theorems 5(iv), 10 and 11).

We also define a critical value for the interfacial energy separating the localized region
from the delocalized region(s):

γc(α, β) = inf{γ : (α, β, γ ) ∈ LOC}.
Theorems 1 and 2 imply that for a given α and β, the system is localized at (α, β, γ ) if and
only if γ > γc(α, β). The next theorem shows, among other things, that for any α and β the
system can always be localized by making γ large enough. We shall also see that there is an
upper bound for γc(α, β) that is uniform in α and β (theorem 11); when γ is above this value,
everything is localized. In contrast, it is interesting to note that for fixed α and β the system
cannot always be delocalized by making γ very negative (see corollary 7).

Theorem 5.

(i) If (α, β, γ ) ∈ DELOCα then γ � log(µd/µd−1) + αp.
(ii) If (α, β, γ ) ∈ DELOCβ then γ � log(µd/µd−1) + β(1 − p).

(iii) For every finite α and β, we have

γc(α, β) � log(µd/µd−1) + max{αp, β(1 − p)} < +∞.

(iv) α∗
A(γ ) � (γ − log(µd/µd−1))/p and β∗

B(γ ) � (γ − log(µd/µd−1))/(1 − p).
(v) If γ > log(µd/µd−1) then (α, β, γ ) is in LOC for every nonpositive α and β.
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Proof. We can obtain a lower bound on the quenched average free energy by considering
the contribution to the partition function of those walks which lie entirely in the hyperplane
xd = 0. This gives

ZN(α, β, γ |χ) � cN(0, 0, N |χ) eγN (2.3)

so that

κ̄(α, β, γ ) � log µd−1 + γ. (2.4)

If (α, β, γ ) ∈ DELOCα then κ̄(α, β, γ ) = log µd +αp, so part (i) follows from equation (2.4).
Part (ii) is similar. For part (iii), observe that if γ > log(µd/µd−1) + max{αp, β(1 − p)} then
(α, β, γ ) cannot be in DELOCα ∪DELOCβ (by parts (i) and (ii)), which implies that (α, β, γ )

is in LOC. This proves (iii). The first inequality of part (iv) follows from the observation that
if (α, β, γ ) ∈ DELOCα then α � (γ − log(µd/µd−1))/p (by part (i)). The second inequality
of (iv) follows similarly from (ii). Finally, part (v) is a direct consequence of (iv). �

For α = β = 0, part (iii) of the preceding theorem can be improved by making use of
results of Hammersley et al (1982). Their results imply that

0 � γc(0, 0) � 2 log µd − log µd−1 − sinh−1 cosh log µd (2.5)

so (0, 0, γ ) is in the localized phase if γ > 2 log µd−log µd−1−sinh−1 cosh log µd . Moreover,
the system at (0, 0, γ ) is delocalized if γ < 0. It is conjectured that γc(0, 0) = 0 (see De’Bell
and Lookman (1993)).

In the following results, we shall be interested in behaviour in the (α, β)-plane at fixed γ .
We first consider the behaviour along the line β = αp/(1 − p), and prove a rigorous version
of a result first given (for a somewhat different model) by Maritan et al (1999).

Theorem 6. For any fixed value of γ the system is localized at every point on the line
β = αp/(1 − p), except possibly at α = β = 0.

Corollary 7. For every nonzero α we have γc(α, αp/(1 − p)) = −∞.

Since the proof of theorem 6 is quite long we postpone it to the next section.
The next theorem uses an idea due to Maritan et al (1999) to bound the phase boundary

in the first quadrant away from the axis.

Theorem 8. If α and γ satisfy

p eγ−α + (1 − p) eγ � 1 (2.6)

or equivalently

α � log

(
p eγ

1 − (1 − p) eγ

)
(2.7)

then

βc(α, γ ) � log

(
1 − p e−α

1 − p

)
. (2.8)

The proof of this result appears in the next section. We shall now deduce some useful
consequences of this theorem.

Corollary 9. (i) For every γ � 0 and every α > 0, we have

βc(α, γ ) � log

(
1 − p e−α

1 − p

)
> 0. (2.9)
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(ii) For every γ < −log(1 − p) (note that −log(1 − p) > 0), we have

β∗
A(γ ) � −log(1 − p) and α∗

A(γ ) � log

(
p eγ

1 − (1 − p) eγ

)
.

(iii) Fix γ = γ0 < 0. In the (α, β)-plane, consider the curve α �→ βc(α, γ0). This curve is
differentiable at α = 0, and its tangent line at that point is the line αp = β(1 − p).

Proof. (i) This follows directly from theorem 8. (ii) Observe that the condition γ <

− log(1 − p) implies (1 − p) eγ < 1, which says that inequality (2.6) holds for sufficiently
large α. For the first bound, let α → +∞ in theorem 8. To prove the second bound, assume
α0 > log[p eγ /(1 − (1 − p) eγ )]. By theorem 8, we know that βc(α0, γ ) > −∞. Hence
α∗

A(γ ) � α0. (iii) Let α∗ = log[p eγ0/(1 − (1 − p) eγ0)]. Since γ0 < 0, we have α∗ < 0.
Define the functions

h1(α) = log

(
1 − p e−α

1 − p

)
and h2(α) =

(
p

1 − p

)
α.

Theorems 8 and 6 imply that

h1(α) � βc(α, γ0) � h2(α) for all α � α∗.

Since h1(0) = 0 = h2(0) and h′
1(0) = p/(1 − p) = h′

2(0), and since α∗ < 0, it follows that
∂βc(α, γ0)/∂α must exist and equal p/(1 − p) at α = 0. This proves (ii). �

Our next result, theorem 10, shows that the phase boundary βc(α, γ ) has a horizontal
asymptote in the first quadrant of the (α, β)-plane (provided that DELOCα(γ ) is nonempty).
This is a straightforward generalization of theorem 3.3 of Martin et al (2000), using the
same method of proof, so we do not present it here. Theorem 11 which follows it says that
DELOCα(γ ) and DELOCβ(γ ) can be empty when γ is sufficiently large. That is, when the
interfacial energy is sufficiently favourable, then even huge values of α and β cannot delocalize
the copolymer. Theorem 11 will be proved at the end of section 3.

Theorem 10. For every finite γ , there exists a finite value U(γ ) such that βc(α, γ ) � U(γ )

for every α > 0. In particular, β∗
A(γ ) never equals +∞ (and similarly, neither does α∗

B(γ )).

Theorem 11. There is a finite value γL such that for every γ > γL, the region
DELOCα(γ ) ∪ DELOCβ(γ ) is empty. Thus γc(α, β) � γL for every α and β. Moreover,
γL � max{p−2, (1 − p)−2} log µd .

3. Proofs of theorems

This section is devoted to the proofs of thermodynamic self-averaging (theorem 12 below), as
well as theorems 6, 8 and 11 from the preceding section. In this section, we shall write µ for
µd to improve readability of some large formulae.

We begin with the statement and proof of the self-averaging result.

Theorem 12. For every finite α, β and γ , and for almost all χ , we have

lim
N→∞

κN(α, β, γ |χ) = κ̄(α, β, γ ).

Proof. As described in the introduction, we know that

lim
N→∞

〈κN(α, β, γ |χ)〉 = κ̄(α, β, γ ). (3.10)
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We now follow the method of Madras and Whittington (2002). Let χ ′ and χ ′′ be two particular
colourings that differ only in the colour of a single vertex. Then

|κN(α, β, γ |χ ′) − κN(α, β, γ |χ ′′)| � max{|α|, |β|}
N

.

This is the analogue of equation (15) in Madras and Whittington (2002). Using the methods
of that paper, we obtain

lim sup
N→∞

√
N

log N
|κN(α, β, γ |χ) − 〈κN(α, β, γ |χ)〉| �

√
2 max{|α|, |β|} (3.11)

with probability 1, which is the analogue of equation (19) in that paper. Combining this with
our equation (3.10) proves our theorem. �

We now proceed to the proof of theorem 6. The basic structure of the proof appears in
Maritan et al (1999). However, that paper uses a scaling assumption which, as the authors
acknowledge, cannot be proved rigorously. One of the main contributions of our paper is to
fill this gap. To explain the situation, we need the following definition.

Definition 13. An N-step bridge is an N-step SAW ω such that ω1(0) < ω1(i) � ω1(N) for
every i = 1, . . . , N . Let bN denote the number of N-step bridges with ω(0) = 0.

An N-step positive excursion is an N-step bridge ω such that ωd(0) = 0 = ωd(1) = ωd(N)

and ωd(i) > 0 for i = 2, . . . , N − 1. A negative excursion is a positive excursion that has
been reflected through the xd = 0 plane (i.e. it has ωd(i) < 0 for i = 2, . . . , N − 1). Let LN

denote the number of N-step positive excursions with ω(0) = 0.

The assumption of Maritan et al (1999) is that Ln ∼ Cntµn for some constants C and t.
In fact, their proof only uses the assumption that Ln � Cntµn for all sufficiently large n.
Although this assumption is probably correct, rigorous mathematics usually cannot prove
lower bounds better than µn exp[−Cn1/2]. This is not quite good enough for the method of
Maritan et al (1999) to work. Fortunately, we can rigorously prove a slightly better bound for
infinitely many values of n, rather than for all sufficiently large n, and it turns out that this is
good enough. The bound is the following lemma.

Lemma 14. There exists a positive constant K such that

Ln � µn exp[−Kn1/3 log n]

for infinitely many positive integers n.

Proof. For each N-step SAW ω with ω(0) = 0, we define the ‘vertical radius’ of ω to be

V (ω) = max
i=0,...,N

|ωd(i)|.

For each integer v � 0, let b
[�v]
N (respectively, b[�v]

N ) be the number of N-step bridges ω with
ω(0) = 0 such that V (ω) � v (respectively, V (ω) � v). For each N, there is an integer vN

such that

b
[�vN ]
N � 1

2bN and b
[�vN ]
N � 1

2bN . (3.12)

That is, vN is the median vertical radius of N-step bridges. Also, for y ∈ Z,N � 1 and v � 1,
let b

[�v]
N (y) denote the number of N-step bridges ω with ω(0) = 0 such that V (ω) � v and

ωd(N) = y.
Next, let ηN,r be the number of N-step bridges with ω(0) = 0 and r = ωd(N) � ωd(i) � 0

for every i = 0, . . . , N . (In the notation of page 108 of Madras and Slade (1993), we have
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ηN,r = |∪L B̂N,L,r |. Note that in Madras and Slade (1993), the coordinate ω2 plays the
role of ωd in the present paper, but this difference is not consequential.) As in the proof of
proposition 4.4.2 of Madras and Slade (1993), we observe that if ω is an arbitrary N-step
bridge, then we can ‘unfold’ part of ω upwards (in the manner of Hammersley and Welsh
(1962)), and unfold the rest of ω downwards, to obtain a bridge of the kind counted by ηN,r

(for some r). The argument of that proof yields

b
[�v]
N � 2

N∑
r=v

r∑
A=0

PD(A)PD(r − A + 1)ηN,r � 2
N∑

r=v

(N + 1)K2
0 exp[3(N + 1)1/2]ηN,r

where PD(A) is the number of partitions of A into distinct integers (see theorem 3.1.4 of
Madras and Slade (1993) for the definition and asymptotics of PD(·), which will not be
needed again in this paper). This implies that

N∑
r=v

ηN,r � 1

2K2
0 (N + 1)

exp[−3(N + 1)1/2]b[�v]
N (3.13)

for every N, v � 1. From the above inequality, we see that for every v and N there exists an
integer r(v,N) � v such that

ηN,r(v,N) � 1

K ′N2
exp[−3(N + 1)1/2]b[�v]

N where K ′ = 4K2
0 . (3.14)

Next we describe a procedure for making long bridges from certain kinds of shorter
bridges. For given N � 1 and v � 1, let ζ and ξ be bridges of the type counted by ηN,r(v,N)

(i.e. N-steps, ζ(0) = 0, r(v,N) = ζd(N) � ζd(i) � 0 for every i, and similarly for ξ ). Let
ξ̂ be the reflection of ξ through the plane xd = 0 (so that −r(v,N) = ξd(N) � ξd(i) � 0
for every i). Also, for given j � 0 and m � 1, let ϕ1, . . . , ϕj be bridges of the type counted
by b

[�v]
m (0) (i.e. m steps, vertical radius at most v, and ϕl

d(m) = 0). Now construct the
(2N + jm + 3)-step walk θ from the following sequence of steps: θ(0) = 0, then one step in
the +x1 direction, one step in the +xd direction, then ζ , ϕ1, ϕ2, . . . , ϕj , then ξ̂ , and finally one
step in the −xd direction. Observe that θ is a bridge. Also, the part of θ that comes from ζ has
θd(·) � 1, and ends with θd(N + 2) = r(v,N) + 1 � v + 1. The part of θ coming from the ϕls
has θd(·) � r(v,N) + 1 − v � 1, and ends with θd(N + 2 + jm) = r(v,N) + 1. The part of θ

coming from ξ̂ has θd(·) � 1, and ends with θd(N + 2 + jm+N) = r(v,N)+ 1− r(v,N) = 1.
Hence the last step in the −xd direction ensures θd(2N + jm + 3) = 0. Thus we see that θ is
a positive excursion. This shows that the number of (2N + jm + 3)-step positive excursions
can be bounded below by the number of ways to choose ζ, ξ and the ϕls. That is, for any
N, v,m � 1 and j � 0, we have

L2N+jm+3 � (ηN,r(v,N))
2
(
b[�v]

m (0)
)j

. (3.15)

Next, we need the following bound,

b
[�v]
2N+1(0) �

(
b

[�v]
N

)2

2N − 1
(3.16)

for every N � 1 and every v � 1. To prove (3.16), let y be an integer such that |y| � v, and
consider two N-step bridges ω(k) (k = 1, 2) with ω(k)(0) = 0, ω

(k)

d (N) = y and V (ω(k)) � v.
Let ψ be the N-step SAW obtained by reflecting ω(2) through the hyperplane x1 = 0, and
traversing it in the opposite order; that is,

ψ(t) = ( − ω
(2)
1 (N − t), ω

(2)
2 (N − t), . . . , ω

(2)
d (N − t)

)
t = 0, . . . , N.
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We can produce a (2N + 1)-step SAW ω by adding one step in the +x1 direction to the end of
ω(1), and then adding the steps of ψ . Then ω is a (2N + 1)-step bridge with ωd(2N + 1) = 0
and V (ω) � v. Moreover, ω uniquely determines ω(1) and ω(2), so we have

b
[�v]
2N+1(0) �

∑
y

(
b

[�v]
N (y)

)2
. (3.17)

Since b
[�v]
N (y) is nonzero only if |y| < N , an application of the Schwarz inequality gives

N−1∑
y=−(N−1)

(
b

[�v]
N (y)

)2
(2N − 1) �


 N−1∑

y=−(N−1)

b
[�v]
N (y)




2

= (
b

[�v]
N

)2
. (3.18)

Now equation (3.16) follows by combining equations (3.17) and (3.18).
For our next step, we define the subset of integers

N ∗ =
{
N � 1 : bN � 1

N2
µN

}
.

Kesten (1963), see corollary 3.1.8 in Madras and Slade (1993), proved that
∑

N bNµ−N

diverges, which implies that N ∗ is an infinite set. For N ∈ N ∗, we have

b
[�vN ]
N � 1

2N2
µN (by (3.12))

(recall the definition of b
[�vN ]
N preceding equation (3.12)) (3.19)

b
[�vN ]
N � 1

2N2
µN (by (3.12)) (3.20)

b
[�vN ]
2N+1 (0) � 1

8N5
µ2N (by (3.16) and (3.19)) (3.21)

ηN,r(vN,N) � µN

2K ′N4
exp[−3(N + 1)1/2] (by (3.14) and (3.20)). (3.22)

For any j � 1 and N ∈ N ∗, equations (3.15), (3.21) and (3.22) imply that

L2N+j (2N+1)+3 � µ2N+2jN

(8N5)j

exp[−6(N + 1)1/2]

(2K ′)2N8

µj+3

µjµ3
. (3.23)

Now let N ∈ N ∗. Define j = jN = 
N1/2� and n = nN = 2N + j (2N + 1) + 3. Then
for sufficiently large N, we have n � (N + 1)3/2, which implies that

j � (N + 1)1/2 � n1/3 and N � n2/3.

Using these inequalities in equation (3.23), we obtain

Ln � µn exp[−6n1/3]

µ3(2K ′)2(8µ)n
1/3

(n2/3)5n1/3+8

� µn exp[−Kn1/3 log n]

(for some constant K > 0) for sufficiently large n of the form n = nN = 2N + jN(2N + 1) + 3
with N ∈ N ∗. This proves the lemma. �

The above lemma permits us to make the argument of Maritan et al (1999) completely
rigorous, as we now show.
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Proof of theorem 6. Fix a value of γ , and fix nonzero values of α and β satisfying
αp = β(1 − p). It suffices to prove a lower bound on κ̄(α, β, γ ) which is strictly larger
than log µ + αp. We shall obtain such a lower bound by counting a particular subset of N-step
SAWs in the sum defining ZN .

Let σ be a large integer for which the inequality of lemma 14 holds. (Near the end of the
proof we shall specify how large σ must be.) In our proof, we shall consider long SAWs that
are made up of many shorter SAWs of length σ . In particular, consider a sequence of k σ -step
SAWs, each of which is either a positive or a negative excursion. This sequence can always
be concatenated in order to get a kσ -step SAW ω starting at 0 that has exactly 2k + 1 vertices
in the xd = 0 plane.

For a colouring χ and an integer r � 1, let Ar(χ) (respectively, Br(χ)) denote the number
of As (respectively, Bs) among {χi : i = (r − 1)σ + 2, . . . , rσ − 1}. (Note that in the scheme
outlined in the previous paragraph, the vertices ω((r − 1)σ ) and ω((r − 1)σ + 1) always lie
in the xd = 0 plane, so we do not care about their colours.) Then A1(χ),A2(χ), . . . is a
sequence of independent random variables, each binomially distributed with parameters p and
σ − 2.

Consider SAWs of length N = kσ for some large integer r. Given χ , consider the subset
of N-step SAWs ω such that for each r = 1, . . . , k, the subwalk (ω((k − 1)σ ), . . . , ω(kσ))

is a positive (respectively, negative) excursion if αAr(χ) � βBr(χ) (respectively, if
αAr(χ) < βBr(χ)). This shows that

Zkσ (α, β, γ |χ) � eγ (2k+1)

k∏
r=1

(Lσ exp[max{αAr(χ), βBr(χ)}]). (3.24)

This and lemma 14 imply that

log Zkσ (α, β, γ |χ)

kσ
� γ (2k + 1)

kσ
+

∑k
r=1[σ log µ − Kσ 1/3 log σ + max{αAr(χ), βBr(χ)}]

kσ
.

Now we let k → ∞. Using the self-averaging property (as described in section 1) and the
strong law of large numbers, we obtain

κ̄(α, β, γ |χ) � 2γ

σ
+ log µ − K

log σ

σ 2/3
+

E(max{αA1(χ), βB1(χ)})
σ

. (3.25)

Using the identities max{u, v} = (u + v + |u − v|)/2 and B1(χ) = σ − 2 − A1(χ), as well as
β(1 − p) = αp, we obtain

E(max{αA1(χ), βB1(χ)})
= E(αA1(χ)) + E(βB1(χ)) + E|αA1(χ) − β(σ − 2 − A1(χ))|

2

= αp(σ − 2) + β(1 − p)(σ − 2) + E|(α + β)A1(χ) − β(σ − 2)|
2

= αp(σ − 2) +
β

2p
E|A1(χ) − p(σ − 2)| using α + β = β

p
. (3.26)

Since the distribution of A1(χ) is asymptotically normal with mean p(σ − 2) and variance
p(1 − p)(σ − 2) as σ → ∞, we obtain the asymptotic relation

E|A1(χ) − p(σ − 2)| ∼
√

p(1 − p)σ√
2π

∫ ∞

−∞
|z| e−z2/2 dz

=
√

2p(1 − p)

π

√
σ .
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Using this and equation (3.26) in equation (3.25), we see that for large σ

κ̄(α, β, γ |χ) � log µ + αp + β

√
1 − p

2pπ
σ−1/2 + o(σ−1/2). (3.27)

In particular, we can make the right-hand side of equation (3.27) strictly greater than log µ+αp

by taking σ large enough. This shows that κ̄(α, β, γ |χ) is strictly greater than log µ + αp.
This completes the proof of delocalization. �

We now proceed to the proof of theorem 8, the lower bound for βc(α, γ ).

Proof of theorem 8. It suffices to prove the following. Assume that (α, β, γ ) satisfies

αp > β(1 − p) (3.28)

p eγ−α + (1 − p) eγ � 1 (3.29)

and

p e−α + (1 − p) eβ � 1. (3.30)

Then (α, β, γ ) is in DELOCα.
Before proceeding, we shall introduce some new notation. For a colouring χ =

(χ1, . . . , χN) and a SAW ω = (ω(0), . . . , ω(N)), define the sets

χ[A] = {i : χi = A, 1 � i � N}
χ[B] = {i : χi = B, 1 � i � N}
ω[>] = {i : ωd(i) > 0, 1 � i � N}
ω[<] = {i : ωd(i) < 0, 1 � i � N}
ω[=] = {i : ωd(i) = 0, 1 � i � N}.

Also, write 〈·〉 to denote expectation over colourings, and write | · | to denote the cardinality
of a set.

We can write the partition function (1.2) as a sum over all N-step SAWs ω, as follows:

ZN(α, β, γ |χ) =
∑

ω

exp(α|ω[>] ∩ χ[A]| + β|ω[<] ∩ χ[B]| + γ |ω[=]|). (3.31)

Writing |ω[>] ∩χ[A]| = |χ[A]|− |ω[<] ∩χ[A]|− |ω[=] ∩χ[A]| and |ω[=]| = |ω[=] ∩χ[A]|+ |ω[=] ∩
χ[B]|, we obtain

ZN(α, β, γ |χ) = exp(α|χ[A]|)
∑

ω

[exp((γ − α)|ω[=] ∩ χ[A]| + γ |ω[=] ∩ χ[B]|)

× exp(−α|ω[<] ∩ χ[A]| + β|ω[<] ∩ χ[B]|)].
We now take logarithms and expectations, and apply Jensen’s inequality (since the logarithm
is a concave function):

〈log ZN(α, β, γ |χ)〉 = 〈α|χ[A]|〉 +

〈
log

∑
ω

[exp((γ − α)|ω[=] ∩ χ[A]| + γ |ω[=] ∩ χ[B]|)

× exp(−α|ω[<] ∩ χ[A]| + β|ω[<] ∩ χ[B]|)]
〉

� αpN + log
∑

ω

〈exp((γ − α)|ω[=] ∩ χ[A]| + γ |ω[=] ∩ χ[B]|)

× exp(−α|ω[<] ∩ χ[A]| + β|ω[<] ∩ χ[B]|)〉. (3.32)
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(Observe that the resulting upper bound can be thought of as a partial annealing.) For a random
event E, we write 1{E} to denote the random variable that equals 1 when E occurs and equals
0 when E does not occur. Since the χis are independent, for each ω we have that

〈exp((γ − α)|ω[=] ∩ χ[A]| + γ |ω[=] ∩ χ[B]|) exp(−α|ω[<] ∩ χ[A]| + β|ω[<] ∩ χ[B]|)〉

=
〈 ∏

i∈ω[=]

exp((γ − α)1{χi = A} + γ 1{χi = B})

×
∏

i∈ω[<]

exp((−α)1{χi = A} + β1{χi = B})
〉

= (p eγ−α + (1 − p) eγ )|ω[=]|(p e−α + (1 − p) eβ)|ω[<]|

� 1 (by equations (3.29) and (3.30)).

Inserting this into the right-hand side of (3.32) gives

〈log ZN(α, β, γ |χ)〉 � αpN + log
∑

ω

1 = αpN + log cN.

This implies that κ̄(α, β, γ ) � αp + log µ, i.e. that (α, β, γ ) is in DELOCα . This proves the
italicized assertion in the first paragraph, and the theorem follows. �

Finally, we prove that everything is localized for sufficiently large γ and, in fact, that
γ > max{p−2, (1 − p)−2} log µd suffices.

Proof of theorem 11. The proof uses the idea of theorem 3.3 of Martin et al (2000). Consider
a colouring χ for a given N. We will bound the free energy by considering the contribution of
a single walk ω that depends on χ .

For each integer k, let Ik = {x ∈ Zd : xd = k}. In particular, I0 is the interfacial
hyperplane. We will describe an N-step SAW ω that lies entirely in I0 ∪ I1, and only takes
steps in the +x1, +xd and −xd directions. Let ω(0) = 0, and for each integer i such that
0 � 2i � N − 2, put both of ω(2i + 1) and ω(2i + 2) in I0 if χ2i+1 = χ2i+2 = B, and put both
of ω(2i + 1) and ω(2i + 2) in I1 otherwise. In this way all of the A-vertices of ω are in I1. (It
is easy to see that such an ω always exists for a given χ .)

Let A(χ) be the number of As in χ1, . . . , χN , and let h(χ) be the number of is such that
χ2i+1 = χ2i+2 = B. Then by considering the contribution of ω to the partition function ZN ,
we find

ZN(α, β, γ |χ) � exp[2γ h(χ) + αA(χ)]

and hence

〈κN(α, β, γ |χ)〉 � 2γ 〈h(χ)〉 + α〈A(χ)〉
N

.

We have 〈A(χ)〉 = pN and 〈h(χ)〉 = 
(N − 1)/2�(1 − p)2, so letting N → ∞ in the above
inequality gives

κ̄(α, β, γ ) � γ (1 − p)2 + αp. (3.33)

A similar argument leads to the bound

κ̄(α, β, γ ) � γp2 + β(1 − p). (3.34)

From (3.33) and (3.34), we see that κ̄(α, β, γ ) is strictly greater than log µd + max{αp, β(1 −
p)} if γ (1−p)2 and γp2 are both strictly greater than log µd , i.e. if γ > max{p−2, (1−p)−2}
log µd . This proves the theorem. �
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localized delocalized

delocalized

α

β

β∗
A(γ)

β∗
B(γ)

α∗
B(γ)

α∗
A(γ)

Figure 2. The expected form of the phase diagram when γ > 0. When γ is sufficiently large, the
delocalized regions stay out of the third quadrant entirely, by theorem 5.

4. Discussion

We have shown that the shapes of the phase boundaries in the (α, β)-plane for γ = 0 are
qualitatively those shown in figure 1. When γ is negative, we have shown that the picture
does not change qualitatively. In contrast, for sufficiently positive γ , we have shown that
the boundaries of the two delocalized phases no longer have a common point, as illustrated
in figure 2. The general shape of each individual boundary is the same for all values of γ ;
in particular, they are convex and continuous, with horizontal and vertical asymptotes. The
exception to this occurs when γ is large enough that the phase boundaries disappear and the
system is localized for every α and β.

For the special case p = 1/2, d = 3 and γ = 0, the locations of the phase boundaries
have been estimated numerically by Martin et al (2000) (see figure 4 in that paper). In
particular, they found that βc(α, 0) tends to a value close to 1 for large α. This compares well
with theorem 8 which gives a lower bound of log 2 = 0.693 . . . for the location of the
asymptote. The numerical asymptotes of Martin et al (2000) in the third quadrant also
compare well with the rigorous bounds (theorem 2.3 in their paper, which is our theorem 5(iv)
for γ = 0).

Our model can be extended by not requiring the first vertex of the walk to be at the origin
but allowing it to be at any distance from the interface. Lemma 2.4 of Martin et al (2000)
(extended to γ �= 0 and suitably fixed) establishes that the quenched average free energy for
walks without the constraint that they begin at the origin is equal to our κ̄(α, β, γ ) and so
the original model and its extension have the same phase diagram. This means that, in the
localized regime, the walk will find the interface and cross it frequently.

Many open questions remain. We have shown that the phase boundaries are differentiable
at the origin when γ � 0, but are the phase boundaries smooth everywhere? We have
shown that for fixed γ0 � 0 there is a first-order transition as we cross from DELOCα(γ0) to
DELOCβ(γ0) through the origin, but in general what is the order of the phase transition as
we cross the phase boundaries? Is it true that γc(0, 0) = 0, i.e. does figure 2 hold for every
small positive γ ? We have proved that the delocalized region in the (α, β)-plane is empty
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for large γ , but does it vanish continuously as γ increases to the critical value γL (i.e., are
DELOCα(γL) and DELOCβ(γL) both empty)?
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